JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

M.Tech I Semester Examinations, June/July - 2019

ADVANCED ALGORITHMS
(Computer Science)
Time: 3hrs
Max.Marks:75
Note: This question paper contains two parts A and B.
Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have $\mathrm{a}, \mathrm{b}, \mathrm{c}$ as sub questions.

PART - A

$$
5 \times 5 \text { Marks }=25
$$

1.a) Express the function $f(n)=5 n^{3}+5 n^{2}+10 n$ in Θ notation.
b) Write short notes on hash tables.
c) Describe various elements of the greedy strategy.
d) Define Graph and list any three application area of graph.
e) State and explain vertex-cover problem.

PART-B

$$
5 \times 10 \text { Marks }=50
$$

2. Explain how divide and conquer method is applied to solve Strassen's matrix multiplication problend

OR

3. Consider the fgr 10 owing recurrence $T(n)=T(n / 3)+T(2 n / 3)+n$ Obtain asymptotic bound using recursid tree method.
4. Suppose tne following list of numbers is inserted in order into an empty binary search tree: $45,32,90,34,68,72,15,24,30,66,11,50,10$ construct the binary search tree.

OR

5. Show the Red-Black tree that results after the successive insertions of the keys 51, 48, $45,23,30$ into an initially empty tree. Delete 51 from the resultant tree.
[10]
6. Deduce a recursive definition for finding the minimum cost of Matrix-Chain multiplication problem. Find an optimal parenthesisation of a matrix chain product whose sequence of dimension is: $<5 * 10,10 * 3,3 * 12,12 * 5,5 * 50,50 * 6>$

OR

7. Given the characters $\mathrm{S}<\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{f}>$ with the following probability $\mathrm{P}=<29,25,20,12$, $05,09>$. Build a binary tree using greedy Huffman algorithm.
8. Explain Dijkstra's algorithm for finding the shortest path in a given graph.

OR

9. Write algorithm to find Minimum Spanning Tree (MST) using Kaushal's method and compute its time complexity.
10. Design the algorithm to solve the following instance of the sum of subsets problem $S=\{5,10,12,13,15,18\}$ and $d=30$.

OR
11. What is travelling salesman problem? Find the solution of following travelling salesman problem.

∞	20	30	10	11
15	∞	16	4	2
3	5	∞	2	4
19	6	18	∞	3
16	4	7	16	∞

